精品深夜av无码一区二区丨国产精品无码久久久久丨亚洲欧美色中文字幕在线丨日本人妻丰满熟妇久久久久久丨日欧137片内射在线视频播放

技術(shù)文章您現(xiàn)在的位置:首頁 > 技術(shù)文章 > ClickChemistry點擊化學(xué)疊氮試劑Azide Plus and Picolyl Azide Reagents

ClickChemistry點擊化學(xué)疊氮試劑Azide Plus and Picolyl Azide Reagents

更新時間:2023-04-22   點擊次數(shù):1272次

Azide Plus and Picolyl Azide 試劑

Kinetic comparison of conventional azide
(Figure 1). Kinetic comparison of chelating azide and non-chelating conventional azide.

Recent advances in the design of copper-chelating ligands, such as THPTA or BTTAA that stabilize the Cu(I) oxidation state in aqueous solution, improve the kinetics of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and greatly increase the sensitivity of alkyne detection. Copper-chelating ligands have also been shown to increase the biocompatibility of the CuAAC reaction by preventing the copper ions from causing biological damage1. The next step in improving the CuAAC reaction was the development of copper-chelating azides as more reactive substrates. Since it is speculated that the Cu(I)-azide association is the rate-determining step in the CuAAC catalytic cycle2, the introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration(Figure 2). It has been proposed that the high reactivity of chelating azides comes from the rapid copper-azido group interaction which occurs prior to Cu(I) acetylide formation, and this renders the deprotonation of alkyne in the rate-determining step3. This concept was successfully exploited to perform CuAAC reactions using pyridine-based copper-chelating azides (picolyl azides) as substrates4-6. Nevertheless, the copper-chelating motif of picolyl azide molecules is not complete, requiring the presence of a copper chelator (e.g. THPTA) to achieve significant improvement in the kinetics of the CuAAC reaction3, 4.

In efforts to improve the performance of the CuAAC reaction in complex media, Click Chemistry Tools developed new chelating azides with a complete copper-chelating system in their structure, termed “Azides Plus"(Figure 3). These azides are capable of forming strong, active copper complexes and are therefore considered both reactant and catalyst in the CuAAC reaction. Using these types of azides, the CuAAC reaction becomes a bimolecular reaction and displays much faster kinetics compared to the CuAAC reaction performed with conventional azides.

Comparative kinetic measurements for the CuAAC reaction(Figure 4)were performed using an agarose-alkyne resin labeling experiment (3.0 uM CuSO4, with (6.0 uM) or without THPTA ligand) using Cy5 Azide Plus, Cy5 Picolyl Azide, and Cy5 bis-Triazole Azide – the fastest copper-chelating azide that has been reported to date7. As expected, the picolyl azide containing the incomplete copper-chelating motif displays relatively slow reactivity, in particular without the presence of THPTA. The kinetic data shows that completing a copper-chelating moiety greatly enhances reactivity, and importantly does not require the presence of copper-chelating ligands. Interestingly, the copper-chelating azides developed by Click Chemistry Tools display almost identical reactivity in the CuAAC reaction compared to the most reactive copper-chelating azide reported up to now7, bis-triazole azide.

The new copper chelating azides allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. This unprecedented reactivity in the CuAAC reaction is of special value for the detection of low abundance targets, improving biocompatibility, and any other application where greatly improved S/N ratio is highly desired.

Selected References:
  1. Steinmetz, N. F., et al. (2010). Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem., 21 (10), 1912-6. [PubMed]

  2. Rodionov, V. O., et al. (2007). Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc., 129 (42), 12705-12. [PubMed]
    Presolski, S. I., et al. (2010). Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc., 132 (41), 14570-6. [PubMed]

  3. Simmons, J. T., et al. (2011). Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc., 133 (35), 13984-4001. [PubMed]

  4. Marlow, F. L., et al. (2014). Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem., 25 (4), 698-706. [PubMed]

  5. Clarke, S., et al. (2012). Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl., 51 (24), 5852-6. [PubMed]

  6. Gaebler, A., et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res., 57 (10), 1934-1947. [PubMed]

  7. Gabillet, S., et al. (2014). Copper-chelating azides for efficient click conjugation reactions in complex media. Angew Chem Int Ed Engl., 53 (23), 5872-6. [PubMed]

訂購信息(靶點科技國內(nèi)倉庫):


靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關(guān)村生命科學(xué)園北清創(chuàng)意園2-4樓2層

© 2025 版權(quán)所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:328047  站點地圖  技術(shù)支持:化工儀器網(wǎng)  管理登陸

主站蜘蛛池模板: 亚洲婷婷综合色高清在线| 一区二区伊人久久大杳蕉| 国产欧美精品一区二区三区四区| 又紧又大又爽精品一区二区| 少妇性bbb搡bbb爽爽爽 | 久久亚洲人成网站| 国产99在线 | 免费| 久久99久久99精品免视看动漫| 白丝乳交内射一二三区| 被黑人猛躁10次高潮视频| 国产aⅴ激情无码久久久无码| 韩国精品福利一区二区三区| 亚洲欧美精品午睡沙发| 国精品无码一区二区三区左线| 国产精品久久久久久久久久免费看| 神马午夜福利不卡片在线| 天天躁日日躁狠狠躁性色avq| 国产精品久久午夜夜伦鲁鲁| 日韩av无码中文无码电影| 亚洲人成人伊人成综合网无码| 国产精品美脚玉足脚交欧美| 樱花草视频www日本韩国| 国精产品一区一区三区有限在线| 欧美巨大巨粗黑人性aaaaaa| 一本加勒比波多野结衣| 天干天干天啪啪夜爽爽av | 中文字幕日韩一区二区三区不卡| 日本熟妇色一本在线看| 中文在线а天堂| 2021无码最新国产在线观看| 国产精品视频一区二区三区不卡 | 久久99亚洲精品久久频| 韩国乱码片免费看| 国产精品国产三级在线专区| 国产精品对白刺激久久久| 熟女人妻水多爽中文字幕| 午夜性刺激免费看视频| 成人a毛片免费观看网站| 成人亚洲精品久久99狠狠| 尤物av无码色av无码| 国产 精品 自在 线免费|